Outline of Solutions to the re-Exam in Financial Econometrics A: February 2013 (for fall term 2012)

Anders Rahbek, University of Copenhagen

January 2013

Question A:

Question A.1:Solution: Markov Chain. One should verify conditions (Gaussian transition density etc). Drift function $\delta(x) = 1 + x^2$, gives:

$$E(\delta(x_t)|x_{t-1} = x) = 1 + (\omega + \alpha |x|)^2 = 1 + \omega^2 + 2\omega\alpha |x| + \alpha^2 x^2$$

Hence $\alpha < 1$ (reasoning should be included).

Question A.2: Solution:

$$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \left. \frac{\partial l_t\left(\theta\right)}{\partial \alpha} \right|_{\theta=\theta_0} = \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \left(1-z_t^2\right) q_t \quad \text{where } q_t = \frac{2|x_{t-1}|}{1+2|x_{t-1}|}.$$
$$\xrightarrow{D} N\left(0,\omega_S\right).$$

This is a MGD (should be verified) and as $q_t^2 \leq 1$ the LLN for weakly mixing processes give the needed with $\omega_S = 2E(q_t^2)$.

Question A.3: Solution: LLN (weakly mixing) gives $(q_t^2 \text{ is bounded by a constant})$, at $\theta = \theta_0$,

$$E\left(2_t^2 - 1\right)Eq_t^2 = Eq_t^2 = \omega_I = \frac{1}{2}\omega_S$$

Collecting terms (using Theorem III.2 - need to discuss this) we get (up to a constant) $\sqrt{T} \left(\hat{\theta} - \theta_0 \right) \rightarrow N(0, v)$ where v is proportional to ω_S .

Question A.4: Solution:

Well-specified residuals (assuming also no-ARCH is not rejected based on the graph.

With $\delta_0 = 1$ can be accepted - and $\beta_0 = 0$ (one should explicitly compute t-statistics): the model is nested and not rejected.

Question B:

Question B.1: Solution: "Bubbles" modelled by switching between regimes with random walk behavior (maybe better if explosive?) and iid behavior. Usual comments re. p_{ii} close to 1 and model well-specified (Gaussian "residuals", no ARCH accepted). Clearly accepted a unit-root in one regime: The random walk regime has highest variance it seems. No std. errors reported so more cannot be said.

Question B.2: Solution:

$$f_{\theta}(y_t|y_{t-1}) = \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left(-\frac{(y_t - \rho y_{t-1})^2}{2\sigma_1^2}\right)$$

Question B.3: Solution: EM-algorithm - should be discussed in detail. In particular, (i) smoothed probabilities $p_t^*(\cdot)$, and (ii) how these are used in the recursive algorithm. Fig B.2 shows the smoothed probabilities $p_t^*(1)$ estimated-seems likely to spend much time in unit-root regime.

Question B.4: Solution:

$$P(s_{T+2} = 1|s_T = 1) = \frac{P(s_{T+2} = 1, s_T = 1)}{P(s_T = 1)} = \frac{P(s_{T+2} = 1, s_{T+1} = 1, s_T = 1)}{P(s_T = 1)} + \frac{P(s_{T+2} = 1, s_{T+1} = 2, s_T = 1)}{P(s_T = 1)}$$

$$= P(s_{T+2} = 1|s_{T+1} = 1) P(s_{T+1} = 1|s_{T+1} = 1)$$

$$+ P(s_{T+2} = 1|s_{T+1} = 2) P(s_{T+1} = 2|s_{T+1} = 1)$$

$$= p_{11}^2 + p_{12}p_{21}$$

$$\hat{p}_{11}^2 + \hat{p}_{12}\hat{p}_{21} = 0.95^2 + 0.05 * 0.07 = 0.9$$

Hence very likely to enter regime 1.

Question B.5: Solution: The regime switching implies that $\alpha + \beta = 1$ due to the misspecification. One could elaborate here: Provide the usual discussion of GARCH models as "filtering" - here it seems a bad and very strange idea to suggest this in fact.