Outline of Solutions to the re-Exam in Financial Econometrics A: February 2013 (for fall term 2012)

Anders Rahbek, University of Copenhagen

January 2013

Question A:

Question A.1:Solution: Markov Chain. One should verify conditions (Gaussian transition density etc). Drift function $\delta(x)=1+x^{2}$, gives:

$$
E\left(\delta\left(x_{t}\right) \mid x_{t-1}=x\right)=1+(\omega+\alpha|x|)^{2}=1+\omega^{2}+2 \omega \alpha|x|+\alpha^{2} x^{2}
$$

Hence $\alpha<1$ (reasoning should be included).

Question A.2: Solution:

$$
\begin{aligned}
\left.\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \frac{\partial l_{t}(\theta)}{\partial \alpha}\right|_{\theta=\theta_{0}}= & \frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(1-z_{t}^{2}\right) q_{t} \quad \text { where } q_{t}=\frac{2\left|x_{t-1}\right|}{1+2\left|x_{t-1}\right|} \\
& \xrightarrow{D} N\left(0, \omega_{S}\right) .
\end{aligned}
$$

This is a MGD (should be verified) and as $q_{t}^{2} \leq 1$ the LLN for weakly mixing processes give the needed with $\omega_{S}=2 E\left(q_{t}^{2}\right)$.

Question A.3: Solution: LLN (weakly mixing) gives (q_{t}^{2} is bounded by a constant), at $\theta=\theta_{0}$,

$$
E\left(2_{t}^{2}-1\right) E q_{t}^{2}=E q_{t}^{2}=\omega_{I}=\frac{1}{2} \omega_{S}
$$

Collecting terms (using Theorem III. 2 - need to discuss this) we get (up to a constant) $\sqrt{T}\left(\hat{\theta}-\theta_{0}\right) \rightarrow N(0, v)$ where v is proportional to ω_{S}.

Question A.4: Solution:

Well-specified residuals (assuming also no-ARCH is not rejected based on the graph.

With $\delta_{0}=1$ can be accepted - and $\beta_{0}=0$ (one should explicitly compute t -statistics): the model is nested and not rejected.

Question B:

Question B.1: Solution: "Bubbles" modelled by switching between regimes with random walk behavior (maybe better if explosive?) and iid behavior. Usual comments re. $p_{i i}$ close to 1 and model well-specified (Gaussian "residuals", no ARCH accepted). Clearly accepted a unit-root in one regime: The random walk regime has highest variance it seems. No std. errors reported so more cannot be said.

Question B.2: Solution:

$$
f_{\theta}\left(y_{t} \mid y_{t-1}\right)=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left(-\frac{\left(y_{t}-\rho y_{t-1}\right)^{2}}{2 \sigma_{1}^{2}}\right)
$$

Question B.3: Solution: EM-algorithm - should be discussed in detail. In particular, (i) smoothed probabilities $p_{t}^{*}(\cdot)$, and (ii) how these are used in the recursive algorithm. Fig B. 2 shows the smoothed probabilities $p_{t}^{*}(1)$ estimatedseems likely to spend much time in unit-root regime.

Question B.4: Solution:

$$
\begin{aligned}
P\left(s_{T+2}=1 \mid s_{T}=1\right)= & \frac{P\left(s_{T+2}=1, s_{T}=1\right)}{P\left(s_{T}=1\right)}=\frac{P\left(s_{T+2}=1, s_{T+1}=1, s_{T}=1\right)}{P\left(s_{T}=1\right)}+\frac{P\left(s_{T+2}=1, s_{T+1}=2, s_{T}=1\right)}{P\left(s_{T}=1\right)} \\
= & P\left(s_{T+2}=1 \mid s_{T+1}=1\right) P\left(s_{T+1}=1 \mid s_{T+1}=1\right) \\
& +P\left(s_{T+2}=1 \mid s_{T+1}=2\right) P\left(s_{T+1}=2 \mid s_{T+1}=1\right) \\
= & p_{11}^{2}+p_{12} p_{21} \\
\hat{p}_{11}^{2}+\hat{p}_{12} \hat{p}_{21}= & 0.95^{2}+0.05 * 0.07=0.9
\end{aligned}
$$

Hence very likely to enter regime 1.
Question B.5: Solution: The regime switching implies that $\alpha+\beta=1$ due to the misspecification. One couould elaborate here: Provide the usual discussion of GARCH models as "filtering" - here it seems a bad and very strange idea to suggest this in fact.

